MIXERS/BLENDERS TECHNOLOGY & PRODUCTS
u type Blenders:
Ribbon Mixer Blender |
A ribbon mixer blender is a light-duty blender mainly used for easy-to-mix powder components that are pre-processed, like dried granules and pre-sieved powders. It is a low-shear mixer and is mostly used for solid-solid mixing. Solid-liquid mixing can also be achieved when a high shearing force is not desired. It occupies less headroom space than large volume mixing. |
Principle of Ribbon Mixer Blender |
Ribbon blenders operate on combined convection and diffusion mechanisms. Convective mixing is the macro movement of large portions of the solids. Convection mixing occurs when the solids are turned over along the horizontal axis of the agitator assembly. The diffusion mixing involves the micro mixing that occurs when individual particles are moved relative to the surrounding particles. In the ribbon, blender diffusion occurs when the particles in front of the ribbon are moved in one direction while nearby particles are not moved or lag behind. Together, these two types of action result in the mixing and blending of solids. |
Construction of Ribbon Mixer Blender |
|
|
Working of Ribbon Mixer Blender |
The feed material is charged in the blender through nozzles or feed-hoppers mounted on the top cover of the blender. The material is loaded by typically filling 40 and 70 % of the total volume of the container. This is generally up to the level of the outer ribbon’s tip. The ribbon agitator is designed to operate at a peripheral speed (also known as tip speed) of approximately 100 m/min, depending on the application and the size of the equipment. During the blending operation, the outer ribbons of the agitator move the material from the ends to the center while the inner ribbons move the material from the center to the ends. Radial movement is achieved by the rotational motion of the ribbons. The difference in the peripheral speeds of the outer and inner ribbons results in axial movement of the material along the horizontal axis of the blender. As a result of the radial and the counter-current axial movement, homogenous blending is achieved in a short time. Blending is generally achieved within 15 – 20 minutes of start-up with a 90 – 95 % or better homogeneity. The particle size and its bulk density have the strongest influence on the mixing efficiency of the ribbon blender. Ingredients with uniform particle size and bulk densities tend to mix faster as compared to ingredients with variations in these attributes. |
After blending, the material is discharged from a discharge valve located at the bottom of the trough. The discharge can be fitted with any of various valves, viz. slide-gate, butterfly, flush bottom, spherical, and other types depending on the application. The operation of the valves can be manual or pneumatically actuated. Ribbon blenders can be designed for multiple discharge ports. In a ribbon blender, the material is discharged by rotation of the ribbon agitator. It is practically difficult to achieve 100% discharge in the ribbon blender. Higher clearances between the external periphery of the outer ribbon and the container can result in unmixed spots at the trough bottom and can lead to discharge problems. |
Advantages |
|
|
|
|
|
|
|
|
|
Disadvantages |
|
|
|
|
Applications of Ribbon Mixer Blender |
|
|
|
|
|
|
|
|
Its other applications include blending and mixing of abrasives, engineered plastic resins, pesticides and herbicides, animal feeds, epoxy resins, pet foods, bakery premixes, pigments, cake mixes, instant drink blends, fertilizers, plastic powders, carbon black, fire retardants, polyethylene, chemicals, gypsum, PVC compounding, leaning compounds, instant breakfast cereals, spice blends, and dietary supplements. |